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Abstract
It is shown how the Langevin equation for the motion of the magnetization of
a ferrofluid particle with uniaxial anisotropy in a strong uniform applied field
reduces to those governing the Néel (i.e. the solid-state or internal) mechanism
of reorientation of the magnetic moment in the non-axially symmetric potential
created when a field is applied at an angle to the easy axis and a Larmor-
like equation for the transverse motion. The field angle, unlike in the solid-
state problem, is a function of the time due to the torques imposed by the
fluid carrier. The Langevin equation for the Brownian rotational motion of
the particle itself reduces to that describing Debye relaxation in the applied
field but is coupled to the magnetic motion via the external field. The results
indicate that the dissipation parameter of the internal solid-state mechanism is
augmented by the external stochastic torques imposed by the carrier. However,
the effect appears to be negligible because of the ratio of the Brownian
(Debye) time to the free Néel diffusion time. Furthermore, just as in the
pure solid-state process, pronounced precession-aided longitudinal relaxation
and ferromagnetic resonance effects, having their origin in the breaking of
the axial symmetry due to the strong field, will occur. The precession-
aided relaxation disappears for weak fields since the potential becomes axially
symmetric. Moreover, the equations of motion of the magnetic moment and
the particle completely decouple and the overall decay function is simply the
product of the decay functions of the internal (Néel) and Debye processes.
It appears that the ferromagnetic resonance in this instance is accurately
described by the known solid-state results, since the Brownian relaxation
time greatly exceeds the effective relaxation times of the internal dipole
and quadrupole modes associated with the ferromagnetic resonance. This
conclusion is reinforced by the favourable agreement of the weak-field result
with experimental observations of the complex susceptibility of four ferrofluid
samples.
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1. Introduction

A long-standing problem in the theory of magnetic relaxation of ferrofluids is how the solid-
state or Néel (longitudinal) mechanism of relaxation of internal rotation of the magnetic dipole
moment with respect to the crystalline axes inside the particle, the associated transverse modes
(which may give rise to ferromagnetic resonance) and the mechanical Brownian relaxation due
to physical rotation of the ferrofluid particle in the carrier fluid may be treated in the context of
a single model comprising both relaxation processes. (We recall that the slowest mode of the
longitudinal relaxation process describes the reversal of the magnetization over the potential
barrier created by the internal anisotropy of the particle which of course will be modified by
an external applied field. The time taken to cross the barrier is known as the Néel relaxation
time and follows the Arrhenius law.)

The question posed above was answered in part by Shliomis and Stepanov [1]. They
showed that for uniaxial anisotropy, for weak applied magnetic fields and in the non-inertial
limit, the equations of motion of the ferrofluid particle incorporating both the internal and the
Brownian relaxation processes decouple from each other. Thus the reciprocal of the greatest
relaxation time is the sum of the reciprocals of the Néel and Brownian relaxation times of
both processes considered independently, that is those of a frozen Néel and a frozen Brownian
mechanism! In this instance the joint probability of the orientations of the magnetic moment
and the particle in the fluid, i.e. the crystallographic axes, is the product of the individual
probability distributions of the orientations of the axes and the particle, so the underlying
Fokker–Planck equation for the joint probability distribution also factorizes as do the statistical
moments. Thus the internal and Debye processes are statistically independent. If the applied
field is sufficiently strong, however, no such decoupling can take place.

The Shliomis–Stepanov approach to the ferrofluid relaxation problem, which is based on
the Fokker–Planck equation, has come to be known as the egg model. Yet another treatment has
recently been given by Scherer and Matuttis [2] using a generalized Lagrangian formalism;
however, in the discussion of the applications of their method they limited themselves to a
frozen Néel and a frozen Brownian mechanism respectively.

Here we re-examine the egg model (a form [3] of the itinerant oscillator model) noting
the ratio of the free Brownian diffusion (Debye) time to the free Néel diffusion time and
discarding the assumption of a weak applied field. The results will then be used to demonstrate
how the ferrofluid magnetic relaxation problem in the non-inertial or high-mechanical-friction
limit is essentially similar to the Néel relaxation in a uniform magnetic field applied at an
oblique angle to the easy axis of magnetization [4–8]. Unlike in the solid-state mechanism
however, the orientation of the field with respect to the easy axis is now a function of the time
due to the physical rotation of the crystallographic axes [1] arising from the ferrofluid. The
fact that the behaviour is essentially similar in all other respects to the solid-state oblique-
field problem suggests that a strong intrinsic dependence of the greatest relaxation time on
the damping (independent of that due to the free diffusion time) arising from the coupling
between longitudinal and transverse modes occurs. Alternatively, the set of eigenvalues which
characterize the longitudinal relaxation now depends strongly on the damping, unlike in axial
symmetry. This precession-aided (so called because the influence of the precessional term
is proportional to the inverse of the damping coefficient) longitudinal relaxation is absent in
the weak-field case [1]. Here the equations of motion decouple into those describing a frozen
Néel (pure Debye or Brownian) and a frozen Brownian (pure Néel) mechanism of relaxation,
respectively. Thus the Néel or longitudinal relaxation is governed by an axially symmetric
potential. Hence no intrinsic dependence of the greatest relaxation time on the damping exists.
Moreover the longitudinal set of eigenvalues is independent of the damping, the damping
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entering [9] via the free (Néel) diffusion time only. It follows that, in the linear response to a
weak applied field, the only effect of the fluid carrier is to further dampen, according to a Debye
or Rocard (inertia-corrected Debye) [10] mechanism, both the longitudinal and transverse
responses of the solid-state mechanism. Furthermore, it will be demonstrated that in this
case the transverse relaxation process in the ferrofluid, which may give rise to ferromagnetic
resonance, may be accurately described by the solid-state transverse result for axial symmetry
because the Brownian relaxation time greatly exceeds the characteristic relaxation times of
all the transverse modes. The latter conclusion is reinforced by the favourable agreement of
the linear response result with experimental observations of the complex susceptibility of four
ferrofluid samples, which is presented in section 6 of the paper.

In order to illustrate how precession-aided relaxation effects may manifest themselves in a
ferrofluid, it will be useful to briefly summarize the differences in relaxation behaviour between
the cases of axially symmetric and non-axially symmetric potentials of the magnetocrystalline
anisotropy and applied field, when the Brownian relaxation mode is frozen. Thus only the
solid-state (Néel) mechanism is operative; that is, the magnetic moment of the single-domain
particle may reorientate only with respect to the crystalline axes.

2. Langevin equation formalism

Our starting point is [8–11] the Landau–Lifshitz or Gilbert (LLG) equation for the dynamics
of the magnetization M of a single-domain ferromagnetic particle, namely

2τN
d

dt
M = β(α−1Ms[M × H] + [[M × H] × M ]), (1)

where

τN = β(1 + α2)Ms

2γα
(2)

is the free (solid-state mechanism) diffusion time (Néel diffusion time) of the magnetic moment,
α is the dimensionless damping (dissipation) constant, Ms is the saturation magnetization, γ
is the gyromagnetic ratio, β = vm/(kT ), vm is the volume (domain volume) of the particle and
α−1 determines the magnitude of the precession term. The magnetic field H consists of applied
fields (Zeeman term), the anisotropy field Ha , and a random white-noise field accounting for
the thermal fluctuations of the magnetization of an individual particle.

Equation (1) is [8–11] the Langevin equation of the solid-state orientation process. The
field H may be written as

H = Hef + Hn(t) (3)

here

Hef = − ∂V

∂M
= − ∂U

∂m
(4)

is the conservative part of H , which is determined from the free energy density V (U is the
free energy, m = Msvm is the magnitude of the magnetic moment m of the single-domain
particle). The random field Hn(t) has the following properties (the angular braces denote the
statistical average over the realizations of Hn(t)):

〈Hn(t)〉 = 0 (5)

〈H(i)
n (t)H

(j)
n (t

′)〉 = 2kT α

γMsvm
δij δ(t − t ′). (6)
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Here δij is Kronecker’s delta; i, j = 1, 2, 3 correspond to Cartesian (the crystalline) axes; δ(t)
is the Dirac delta function. The random variable Hn(t)must also obey Isserlis’s theorem [10].
By introducing [1] the dipole vector

e = M

Ms

= m

m
(7)

we find that equation (1) becomes

de

dt
= γ

1 + α2
(e × H) +

αγ

1 + α2
(e × H)× e. (8)

Equation (8) has the form [1] of a kinematic relation involving the angular velocity ωe of the
dipole vector e:

de

dt
= ωe × e = (ωL + ωR)× e. (9)

Here

ωL = − γH

1 + α2
= −γ (Hef + Hn(t))

1 + α2
(10)

ωR = γα

1 + α2
(e × H). (11)

ωL is the angular velocity of free (Larmor) precession of m in the field Hef superimposed on
which is the rapidly fluctuating Hn(t); ωR is the relaxational component of ωe. Equations (10)
and (11) differ from equations (8) and (9) of Shliomis and Stepanov [1] because they contain the
noise field and the factor (1 + α2)−1, since the Gilbert equation is used rather than the Landau–
Lifshitz equation. The kinematic relation, equation (9), and the coupled Langevin equations,
equations (10) and (11), are stochastic differential equations describing the motion of the dipole
vector e relative to the crystallographic axes, that is the internal or solid-state relaxation.
Differential recurrence relations (equivalent to the Fokker–Planck equation) for the statistical
moments governing the dynamical behaviour of e may be deduced from equations (9)–(11) as
described in [6,7,10]. If we now, following [1] and allowing for the factor (1 + α2), introduce
the magnetic viscosity

µ = Ms

6αγ
(1 + α2), (12)

equation (11) becomes

6µvmωR = m ×
(

− ∂U
∂m

)
+ m × Hn(t). (13)

Equation (13) will be the key equation in our discussion of precession-aided Néel relaxation.

3. Precession-aided effects in Néel relaxation

The discussion given above holds for arbitrary free energyU . We now specialize our discussion
to a particle with uniaxial anisotropy, such that

vmV (M) = U = −mH0(e · h)−Kvm(e · n)2 (14)

h = H0

H0
. (15)

H0 is the amplitude of the external uniform magnetic field (the polarizing field), K > 0
is the constant of the effective magnetic anisotropy, n is a unit vector along the easy
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magnetization axis. The fact that h is not necessarily parallel to n means that the axial
symmetry characteristic of uniaxial anisotropy will be broken. Thus equation (13) becomes

6µvmωR −mH0[e × h] − 2Kvm(e · n)[e × n] = m × Hn(t) = λR(t), (16)

say. Next we write U explicitly as

U = −mH0 cos# +Kvm sin2 ϑ, (17)

where

cos# = cosϑ ′ cosϑ + sin ϑ sin ϑ ′ cos(ϕ − ϕ′). (18)

Here ϑ, ϕ are the polar angles of e with respect to the easy axis, which is the polar axis; ϑ ′, ϕ′

are the polar angles of the external field direction h again with respect to the easy axis which
in the solid-state problem are constants independent of the time. Analytic expressions for the
greatest relaxation time τ in the bistable potential given by equation (17) in the intermediate-
to-high-damping case (IHD) (where α is such that the energy loss per cycle of the motion of the
magnetization at the saddle point energy trajectory,&E � kT ) may be obtained using Langer’s
theory [12,13] of the decay of metastable states applied to the two-degree-of-freedom system
specified by ϑ and φ, since in the solid-state case ϑ ′ and φ′ are fixed. Likewise, the Kramers
energy-controlled diffusion method [12,14] may be used to obtain τ in the very-low-damping
(VLD) case where &E � kT .

We summarize as follows [8]. The free energy vmV (M), equation (14), has a bistable
structure with minima at n1 and n2 separated by a potential barrier containing a saddle
point [8, 15] at n0. If (α(i)1 , α

(i)
2 , α

(i)
3 ) denote the direction cosines of M and M is close

to a stationary point ni of the free energy, then V (M) can be approximated to second order
in α(i) as (see [9, 12, 15])

V = Vi + 1
2 [c(i)1 (α

(i)
1 )

2 + c(i)2 (α
(i)
2 )

2]. (19)

The relevant Fokker–Planck equation may then be solved near the saddle point yielding [12,15]

τ = τIHD ∼
{
,0

2πω0
[ω1eβ(V1−V0) + ω2eβ(V2−V0)]

}−1

, (20)

(equations for the expansion coefficients c(j)i and Vi for the potential given by equation (17)
are given elsewhere [12, 15]);

ω2
1 = γ 2M−2

s c
(1)
1 c

(1)
2 , ω2

2 = γ 2M−2
s c

(2)
1 c

(2)
2 , ω2

0 = −γ 2M−2
s c

(0)
1 c

(0)
2 (21)

are the squares of the well and saddle angular frequencies, respectively, and

,0 = β

4τN

[
−c(0)1 − c(0)2 +

√
(c
(0)
2 − c(0)1 )

2 − 4α−2c
(0)
1 c

(0)
2

]
. (22)

Equation (22) is effectively the smallest positive (unstable barrier crossing mode) eigenvalue of
the noiseless Langevin equation (equation (8) omitting theHn(t) term) linearized in terms of the
direction cosines about the saddle point. We remark that the influence of the precessional term
on the longitudinal relaxation is represented by the α−2 term in equation (22). Furthermore,
the relative magnitudes of the precessional and aligning terms in the Langevin equations
are determined by α−1, so equations (20)–(22), and (23) below, describe precession-aided
longitudinal relaxation.

Equation (20) applies when&E � kT (IHD). If&E � kT , we have for the escape from
a single well [8, 12]

τ = τLD ∼ πkT

ω1&E
eβ(V0−V1) (23)
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where &E ≈ αVm|V0|. The IHD and VLD limits correspond to α � 1 and α � 0.01,
respectively. However, for crossover values of α (around α ≈ 0.1), neither equation (20)
nor (23) yields reliable quantitative estimates. Thus a more detailed analysis is necessary [12].
The most striking aspect of the precession-aided relaxation is the behaviour of the complex
susceptibility for a small ac field superimposed on the strong field H0. This is particularly
sensitive to the longitudinal and transverse mode coupling, exhibiting [8] a strong dependence
of the high-frequency ferromagnetic resonant modes (characterized by ωL) on the aligning
(Néel) mode characterized by ωR and vice versa. Furthermore, suppression of the barrier
crossing mode in favour of the fast relaxation modes in the wells of the bistable potential given
by equation (17), occurs if the applied field is sufficiently strong. In terms of the differential
recurrence relations generated by the Langevin or Fokker–Planck equations by means of a
Fourier expansion in the spherical harmonics Yml (ϑ, φ), the coupling effect manifests itself in
recurrence relations inextricably mixed in the characteristic numbers l and m, unlike in axial
symmetry.

Finally, we remark on the asymptote for axial symmetry which arises if H0 is reversed,
or is applied parallel to the easy axis n. In the axially symmetric case (H0 = 0), τ is given by
Brown’s asymptotic expression [11] for simple uniaxial anisotropy:

τ ∼ τN
√
π

2σ 3/2
exp σ, σ > 2, (24)

where σ = βK . Thus, τ normalized by τN , unlike equations (21)–(23), is independent of α,
so the mode-coupling effect completely disappears. Bridging formulae, which illustrate how
the asymptotic equations (20) and (23) join smoothly onto the asymptotic equation (24) in the
limit of small H0, have been extensively discussed in [12].

4. The effect of the fluid carrier (i) response for zero or very weak applied field

Let the crystallographic axes now rotate with angular velocity ωn corresponding to physical
rotation of the ferrofluid particle due to the stochastic torques imposed by the liquid and the
aligning action of H0 (we now have five degrees of freedom: the dipole angles ϑ, φ as before
and the Euler angles ϑ ′, φ′, ψ ′ which instead of being constant are now functions of the time
due to the physical rotation of the easy axis). The relative angular velocity of the dipole and
easy axis is then ωR − ωn, so equation (16), describing the motion of m, must be modified to

6µvm(ωR − ωn)−mH0[e × h] − 2Kvm(e · n)[e × n] = λR(t). (25)

The corresponding mechanical equation of motion of the particle is (the particle is treated as a
rigid sphere, I is the moment of inertia of the sphere about a diameter) by Newton’s third law

I ω̇n + 6µvm(ωn − ωR) + 6ηvωn − 2Kvm(e · n)[n × e] = λn(t)− λR(t), (26)

where

6ηv = ζ (27)

is the mechanical drag coefficient of the particle in the fluid, v is its hydrodynamic volume, η is
the viscosity of the fluid. Thus, by addition of equations (25) and (26) we have the mechanical
equation

I ω̇n + 6ηvωn −mH0[e × h] = λn(t), (28)

where the white-noise λn(t) torque arising from the fluid carrier obeys

〈λn(t)〉 = 0 (29)

〈λ(α)n (t)λ(β)n (t ′)〉 = 2kT ζδαβδ(t − t ′). (30)
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α, β = 1, 2, 3 refer to the orientation of the crystallographic axes relative to Cartesian axes
fixed in the liquid. The λn(t) again obey Isserlis’s theorem [10], and we shall suppose that
λn(t) and λR(t) are uncorrelated.

Equations (25) and (28) in general are coupled to each other inextricably by the external
field term e × h. If that vanishes, however, with the result that U depends only on e · n [2],
they become

6µvm(ωR − ωn)− 2Kvm(e · n)[e × n] = λR(t), (31)

I ω̇n + 6ηvωn = λn(t). (32)

The equations thus separate into the equation of motion of m relative to the easy axis,
equation (31), and the equation of motion of the easy axis itself, equation (32). The mechanical
equation (32) is governed by two characteristic times [12]: the Brownian diffusion or Debye
relaxation time

τB = 3ηv

kT
(33)

and the frictional time

τη = I

6ηv
. (34)

Thus the dynamical behaviour of equation (32) is governed by the inertial parameter

a = τη

τB
= kT

3ηv

I

6ηv
. (35)

If a → 0, we have the non-inertial response. This is treated by Shliomis and Stepanov [1]
who were able to factorize the joint distribution of the dipole and easy axis orientations in
the Fokker–Planck equation into the product of the two separate distributions. Thus as far as
the internal relaxation process is concerned, the axially symmetric treatment of Brown [11]
applies. Hence intrinsically no coupling between the transverse and longitudinal modes exists,
i.e. the eigenvalues of the longitudinal relaxation process are independent ofα. The distribution
function of the easy axis orientations n is simply that of a free Brownian rotator excluding
inertial effects.

The picture in terms of the decoupled Langevin equations (31) and (32) above (omitting
the inertial term I ω̇n in equation (32)) is that the orientational correlation functions of the
longitudinal and transverse components of the magnetization in the axially symmetric potential,
Kvm sin2 ϑ , are simply multiplied by the liquid-state factor, exp(−t/τB), of the Brownian
(Debye) relaxation of the ferrofluid stemming from equation (32). As far as the ferromagnetic
resonance is concerned, we shall presently demonstrate that this factor is irrelevant.

We summarize as follows: the longitudinal and transverse magnetic susceptibilities
characterizing the solid-state process are approximately described by [16]

χ‖(ω) = χ ′
‖(0)

1 + iωτ
(36)

χ⊥(ω) = χ ′
⊥(0)[(1 + iωτ2) +&]

(1 + iωτ2)(1 + iωτ⊥) +&
(37)

& = στ2

α2τ 2
N

(τN − τ⊥). (38)

In equations (36) and (37),χ ′
‖(0), χ

′
⊥(0) are the static susceptibilities parallel and perpendicular

to the easy axis and τ is rendered accurately [17] by Brown’s expression, equation (24), if
σ � 2. Furthermore, the transverse susceptibility, equation (37), which is derived by truncating
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the infinite hierarchy of differential recurrence relations for the correlation functions (withU =
Kvm sin2 ϑ) at the quadrupole term using the effective eigenvalue method, yields an accurate
result for the transverse response provided that [18] σ � 1, or σ � 5. The effective eigenvalue
solution, equation (37), fails [18] for σ in the range of 1–5 (where equations (24) and (36)
also cease to be entirely reliable), since at small to moderate barrier heights a spread of the
precession frequencies of the magnetization in the anisotropy field exists. Thus the hierarchy
must be solved exactly using matrix continued fractions. In equation (37) τ⊥ is the effective
relaxation time of the autocorrelation functions of the components sin ϑ cosφ, sin ϑ sin φ
(which are linear combinations of the autocorrelation functions of Y 1

1 (ϑ, φ) and Y−1
1 (ϑ, φ)) of

the dipole moment relaxation mode, while τ2 is the effective relaxation time of the quadrupole
moment relaxation mode, which is a linear combination of the autocorrelation functions of
Y 1

2 (ϑ, φ) and Y−1
2 (ϑ, φ). The effective relaxation times τ2 and τ⊥ may both be expressed [16]

in terms of Dawson’s integral and decrease monotonically with σ , each having asymptotes
τN

σ
, σ � 1. (39)

Now according to linear response theory

χ‖,⊥ = f‖,⊥(0)− iω
∫ ∞

0
f‖,⊥eiωt dt = f̃‖,⊥(0)− iωf̃‖,⊥(ω) (40)

where f‖,⊥(t) are the longitudinal and transverse after-effect functions, e.g.

f‖(t) ∼= χ ′
‖(0) exp(−t/τ ), σ � 2 (41)

Moreover, in the frequency domain (the tilde denoting the one-sided Fourier transform)

f̃‖(ω) = χ ′
||(0)

iω + 1/τ
(42)

f̃⊥(ω) = χ ′
⊥(0)(iω + 1/τ2)

(iω + 1/τ2)(iω + 1/τ⊥) + (σ/τNα2)(1/τ⊥ − 1/τN)
. (43)

We note that both the effective relaxation times and the zero-frequency susceptibilities may be
written in terms of Dawson’s integral. The detailed expressions are given in [16].

The complex susceptibility of a ferrofluid in a weak applied field may be written
directly from equations (42), (43) and the Langevin equations (31) and (32) (taking note
of equation (35)) using the shift theorem for one-sided Fourier transforms, namely

7{e−λtf (t)} = f̃ (iω + λ).

Thus

χ‖(ω) = χ‖′(0)
1 + iωT‖

, σ � 2 (44)

with the Néel relaxation time modified to

T‖ = ττB

τ + τB
. (45)

Moreover [16], provided σ is not in the range 1–5 so that the effective eigenvalue truncation
of the hierarchy of recurrence relations for the statistical moments is valid,

χ⊥(ω) = χ ′
⊥(0)[iωT2 + 1 +&T⊥T2/τ⊥τ2]

(iωT2 + 1)(iωT1 + 1) +&T⊥T2/τ⊥τ2
. (46)

Thus the effective relaxation time of the dipole mode is modified to

T⊥ = τ⊥τB
τ⊥ + τB

(47)
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and that of the quadrupole mode becomes

T2 = τ2τB

τ2 + τB
. (48)

In a weak measuring field the particle anisotropy axes are oriented in a random fashion.
Hence [1, 19] the susceptibility (averaged over particle orientations) is given by

χ = 1
3 (χ‖ + 2χ⊥). (49)

Now [20] in ferrofluids where the Néel mechanism is blocked, σ � 8, and so we will have
in equation (45) τ � τB ; thus

T‖ ∼= τB. (50)

Furthermore, in equations (47) and (48) we may use the fact [16] that τ⊥ and τ2 are monotonic
decreasing functions of σ , and also that usually [19], for the ratio of the free diffusion times,

τN

τB
∼ 10−2,

in order to ascertain which times may be neglected in equation (46). Thus we deduce that in
equation (46) for all σ

T⊥ ∼= τ⊥ (51)

T2
∼= τ2. (52)

Hence we may conclude, recalling the exact [18] transverse relaxation solution for χ⊥ from
the Fokker–Planck equation, that the solid-state effective eigenvalue solution embodied in
equation (37) can also accurately describe the ferromagnetic resonance in ferrofluids except
in the range of σ from 1 to 5. Then the exact solid-state solution based on matrix continued
fractions must be used. The conclusion appears to be in agreement with that of Fannin [21]
and Fannin et al [22] who have extensively analysed experimental data on ferrofluids using
equation (37). By way of illustration, a detailed comparison with experimental data for four
colloidal suspensions is given in section 6. We also remark that the very-large-σ (high barrier)
limit of equation (46) (the Landau–Lifshitz limit) agrees with the result of Scaife [20] who
analysed the problem using an entirely different method. In the limit of high damping where
α � 1, equation (46) reduces to a pure relaxation equation in complete agreement with
Shliomis and Stepanov [1], namely their equations (31) and (32).

Having explained how the FMR effect in ferrofluids consisting of uniaxial particles,
subjected to a weak external field, may be accurately described by the solid-state response
(that is, the factor exp(−t/τB) arising from the mechanical motion may be discounted in the
transverse response), we shall now very briefly describe inertial effects arising from the term
I ω̇n in equation (32). Furthermore, we shall justify the neglect of this term as far as ferrofluid
relaxation is concerned.

If inertial effects are included, the correlation functions pertaining to longitudinal and
transverse motions will still be the product of the correlation functions of the free Brownian
motion of a sphere [23] and the solid-state correlation functions 〈cosϑ(0) cosϑ(t)〉0, etc;
however, the composite expressions will be much more complicated for an arbitrary inertial
parameter a [23]. The reason is that the orientational correlation functions for the Brownian
motion of a sphere may only be expressed exactly as the inverse Laplace transform of an infinite
continued fraction in the frequency domain. The parameter a has however been evaluated by
Raikher and Shliomis [19] for typical values of ferrofluid parameters and is of the order of
10−5. Hence, one may entirely neglect inertial effects unlike [10] in polar dielectrics, where
the inertial effects become progressively more important at high frequencies. We remark that
our treatment will apply not only to uniaxial anisotropy but also to an arbitrary non-axially
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symmetric potential U(e · n, t) of the magnetocrystalline anisotropy. Since the potential is a
function of e · n only, the autocorrelation functions of the overall process (e.g. cubic anisotropy)
will be the product of the individual orientational autocorrelation functions of the freely rotating
sphere and the solid-state mechanism. However, unlike the case for uniaxial anisotropy, even
though the correlation functions still factorize, substantial coupling between the transverse and
longitudinal modes (which now have α-dependent eigenvalues; cf equations (20), (23)) will
exist. The reason is that the non-axial symmetry is now an intrinsic property of the particles.
This phenomenon should be observable in measurements of the complex susceptibility of such
particles.

5. The effect of the fluid carrier (ii) mode–mode coupling effects for particles with
uniaxial anisotropy in a strong applied field

We commence by recalling equations (25) and (28). In the non-inertial limit equation (28)
becomes

6ηvωn −mH0[e × h] = λn(t), (53)

and on eliminating ωn in equation (25) with the aid of equation (53):

ωR −mH0[e × h]

(
1

6µvm
+

1

6ηv

)
− K

3µ
(e · n)[e × n] = λR(t)

6µvm
+

λn(t)

6ηv
. (54)

Equation (54) is of the same form as equation (16) describing the motion of the dipole moment
with a frozen (η → ∞) Brownian mechanism in the presence of a field H0 at an oblique angle
to the easy axis. It immediately follows that the effect of the fluid on the solid-state or internal
mechanism of relaxation is to alter the magnetic drag coefficient ζm of the solid-state process
such that

1

ζm
= 1

6µvm
+

1

6ηv
. (55)

The corresponding change in the dimensionless damping coefficientα of the solid-state process
is

α′ = α
(

1 +
µvm

ηv

)
= α

(
1 +

τN

τB

)
. (56)

Here the ratio τN/τB represents the coupling between the magnetic and mechanical motions
arising from the non-separable nature of the Langevin equations (53), (54). Thus the correction
to the solid-state result imposed by the fluid is once again of the order 10−2. Hence we may
conclude, despite the non-separability of the equations of motion, that the Néel relaxation time
of the ferrofluid particle should still be accurately represented in the IHD and VLD limits
by the solid-state relaxation time formulae, equations (20)–(23). Furthermore, equation (54)
should be closely approximated by the solid-state relaxation equation

ωR −mH0(e × h)
1

6µvm
− K

3µ
(e · n)(e × n) = λR(t)

6µvm
. (57)

Hence just as in the solid-state problem one would also expect the following effects to
occur [8] in a ferrofluid for a large dc bias field superimposed on which is a small ac field:

(a) A strong dependence of τ/τN on α (i.e. a frictional dependence of the smallest non-
vanishing eigenvalue) unlike in the weak-field case (axial symmetry), which is a signature
of the coupling between the longitudinal and transverse modes.
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(b) Suppression of the Néel and barrier crossing modes in favour of the fast relaxation modes
in the deep well of the bistable potential created by equation (17), if the reduced [8] bias
field hc exceeds a certain critical value. This gives rise to a high-frequency Debye-like
relaxation band [4, 8].

(c) A very-high-frequency FMR peak due to excitation of the transverse modes having
frequencies close to the precession frequency.

In the longitudinal response however, guided by equation (45), it will be necessary to have
particles with τ < τB so that the characteristic α dependence of the response is not masked by
the Brownian process due to the damping imposed by the fluid.

We now return to the mechanical equation, (28), of motion of the particles, which for small
damping (if the small inertial term is retained) predicts a damped oscillation of fundamental
frequency [19]

ω0 =
√
mH0

I
(58)

which would appear in the spectrum as a high-frequency resonant absorption, as has been
verified [24, 25] in the theory of dielectric relaxation. In ferrofluids however it has been
estimated [19] that fields of order of magnitude 107 Oe are needed for oscillatory effects,
which is higher than any which may be obtained under terrestrial conditions. Hence one may
rule out this resonant mode of the motion.

It remains to discuss the influence of H0 on the mechanical relaxation modes. An estimate
of this may be made by recalling that equation (28) is basically the equation of motion of a
rigid dipole in a strong constant external field. Moreover, if inertial effects are neglected, it has
been shown in [10,26] that the longitudinal and transverse effective relaxation times decrease
monotonically with field strength from τB , having asymptotic behaviour

τ‖ ∼ τB

ξ
, τ⊥ ∼ 2τB

ξ
(59)

where

ξ = vMsH0

kT
� 1. (60)

Thus, the principal effect of the external field in equation (53) is to reduce the Brownian
relaxation time.

Since detailed experimental data for ferrofluid susceptibilities in a strong oblique
polarizing field (of intensity 10 T and higher), superimposed on which is a weak ac field,
are not yet readily available, we shall in the next section confine ourselves to an illustration
of how the weak-ac-field susceptibilities, equations (44), (46), (49) which incorporate the
effect of the fluid carrier, compare favourably with experiment. We shall also demonstrate
the effect which a weak polarizing field H0 (0–100 kA m−1) has on the susceptibility
profiles (figures 1–3) below. Furthermore, we shall show how to determine the average
value of the internal field of a particle, the anisotropy constant and the gyromagnetic
ratio.

6. Comparison with experimental observations of the complex susceptibility data

In order to support our theoretical discussions, we now present room temperature, complex
susceptibility (χ(ω) = χ ′(ω)− iχ ′′(ω)) data, for four colloidal suspensions, samples 1–4. In
all of the samples the surfactant is oleic acid.
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Figure 1. Normalized plots of χ ′(ω) and χ ′′(ω) against f (Hz) for samples 1, 2 and 3 over the
frequency range 100 MHz–6 GHz.
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Figure 2. (a) Normalized plots of χ ′(ω) and χ ′′(ω) and (b) the corresponding fits using
equations (44), (46), (49), for sample 4.

The samples are as follows:

• Sample 1 is a 150 G (0.015 T) fluid consisting of Ni0.5Zn0.5Fe2O4 particles suspended in
a low-vapour-pressure hydrocarbon (Isopar M). The particles have a median diameter of
9 nm and a bulk saturation magnetization of 0.15 T.

• Sample 2 is a 300 G (0.03 T) fluid consisting of Mn0.66Zn0.34Fe2O4 particles suspended in
Isopar M. The particles have a median diameter of 9 nm and a bulk saturation magnetization
of 0.31 T.

• Sample 3 is a 400 G (0.04 T) fluid consisting of cobalt particles suspended in a di-
ester carrier. The particles have a median diameter of 7.8 nm and a bulk saturation
magnetization of 1 T.
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Figure 3. (a) A three-dimensional plot of χ ′(ω) against f (Hz) for sample 4 over the frequency
range 100 MHz–15 GHz for 17 values of polarizing field,H0, over the range 0–100 kA m−1. (b) A
three-dimensional plot of χ ′′(ω) against f (Hz) for sample 4 over the frequency range 100 MHz–
15 GHz for 17 values of the polarizing field, H0, over the range 0–100 kA m−1.

• Sample 4 is a 760 G (0.076 T) fluid consisting of magnetite particles suspended in Isopar
M. The particles have a median diameter of 9 nm and a bulk saturation magnetization of
0.4 T.

For samples, 1–3, figure 1 shows the results obtained for the real (χ ′(ω)) and imaginary
(χ ′′(ω)) susceptibility components over the frequency range 100 MHz–6 GHz. It is apparent
that a resonant-like profile, indicated by the χ ′(ω) component changing sign, at a frequency
fres , is characteristic for all the samples. fres is seen to vary from 0.54 GHz for sample 1 to
4.4 GHz for sample 3. As 2πfres = γ H̄A = γ 2K̄/Ms (where H̄A and K̄ are average values of
the particle internal field and anisotropy constant, respectively), this result is a signature of the
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Figure 4. A plot of fres against H0 for sample 4 used in determining the average value of the
internal field, H̄A = 41 kA m−1.

difference in internal field and anisotropy constant of the particles. The susceptibility profiles
have the same resonant form as was obtained for sample 4 (see figure 2), which proved to have
a profile of the form predicted by equations (44), (46), (49). Furthermore, the actual values of
H̄A and K̄ can be determined by means of polarized measurements as will be demonstrated
now for sample 4.

Plot (a) of figure 2 shows the susceptibility components obtained for sample 4 over the
wider frequency range of 50 MHz–10 GHz, whilst plot (b) shows the fit obtained using
equations (44), (46), (49). As magnetic fluids have a distribution of particle shape and size,
these parameters are accounted for by modifying the above equations to include a normal
distribution of the anisotropy constant, K̄ , and a Nakagami distribution [21, 22] of radii, r .
Here the fit was obtained for a mean K̄ = 1.1 × 104 J m−3 with a standard deviation of
6 × 103 and a Nakagami distribution of radii, r , with a width factor β = 4, a mean particle
radius r̄ ≈ 4.5 nm, and a saturation magnetization of 0.4 T. The value used for α, the damping
parameter, was 0.1, a figure within the range of values normally quoted [22] for α.

As far as measurements with a weak polarizing field are concerned, we remark that
variation of the polarizing field, H0, over the range 0–100 kA m−1, results in fres increasing
from 1.6 to 5.0 GHz. However, a much clearer understanding of the effect of H0 on χ ′(ω) and
χ ′′(ω) can be gleaned from a three-dimensional representation of the spectra as illustrated in
figure 3(a) for the χ ′′(ω) component and figure 3(b) for the χ ′′(ω) component. Initially both
components reduce with increasing H0, this effect being a manifestation of the contribution of
the relaxational components to the susceptibility. Beyond approximately 400 MHz a relaxation
to the resonance transition occurs with the χ ′(ω) component going through zero at the resonant
frequency fres .

A plot of fres against H0 for the sample is shown in figure 4 and, as ωres = 2πfres =
γ (H0 + H̄A), the value of H̄A is determined from the intercept of figure 4 and is found
to be 41 kA m−1, corresponding to a mean value of the anisotropy constant, K̄ , at room
temperature and bulk Ms of 0.4 T, of 8.2 × 103 J m−3. The gyromagnetic ratio, γ , is found
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to be 2.26 × 105 S−1 A−1 m from the slope of figure 4 and is in close agreement with the
theoretical value of 2.21 × 105 S−1 A−1 m.

Similar polarized studies undertaken [27,28] on samples 1–3 produced approximate H̄A-
values of 1.6, 27 and 114 kA m−1, respectively. The corresponding values of K̄ were 120,
4 × 103 and 6 × 104 J m−3.

7. Conclusions

The approach to the combined mechanical and magnetic motions of a ferrofluid particle and
their mutual behaviour, which is based on rearrangement of the Langevin equations and a con-
sideration of the various characteristic timescales, indicates how the physical effects of the fluid
carrier on the magnetic relaxation may be explained without elaborate and detailed solution
(which will always involve supermatrix continued fractions) of the various equations describ-
ing the system. The relative orders of magnitude of the timescales involved determine which of
the existing independent internal and Brownian mode solutions may be applied to the ferrofluid
particle in any given situation. These considerations hold even in the strong-field case, where
the variables cannot be separated in the underlying Langevin equations. In particular, for zero or
very weak external fields, we have shown that the high-frequency behaviour may be accurately
modelled by the solid-state result equation (37), as the Brownian relaxation time τB simply can-
cels out of equation (46) due to the relative orders of magnitude of the various timescales. These
are dictated by the ratio of the free diffusion times and the monotonic decrease of the effective
relaxation times with barrier height which is a consequence of Dawson’s integral. This appears
to be the explanation for the success of equation (37) in explaining the experimental results of
section 6 and of Fannin et al [22,27]. We further remark that no assumptions beyond that of the
effective eigenvalue truncation of the set of differential recurrence relations have been made
to obtain this result, since for zero or weak field the Langevin equations will always decouple.
Furthermore, in the σ -range 1–5, where the effective eigenvalue solution is not [18] an accurate
representation of the exact transverse susceptibility solution, that solution may always be found
from the underlying set of differential recurrence relations by using matrix continued fractions.

The experimental data on the linear response, that is, the weak-ac-field susceptibility
and the effect of a weak polarizing field, which we have presented in section 6, strongly
support our conjectures concerning the application of the solid-state transverse response result
equation (37) to magnetic fluids.

Finally, although the equations of motion do not separate in a strong bias field, it has
been shown by considering the ratio of the free diffusion times that the relaxation behaviour is
essentially similar to the Néel relaxation in an oblique field. Thus one would expect, because
all the eigenvalues now depend strongly on the damping, various precession-aided relaxation
and resonant effects to appear in ferrofluids just as in the solid state. The precession-aided
relaxation is also of interest in connection with the stochastic resonance phenomenon [29,30].
This phenomena automatically appears in bistable potentials such as equation (17) and should
be acutely sensitive to the magnitude and direction of the bias field because of the depletion
effect produced by such a field in the shallower of the two wells of the potential [31–34]. The
stochastic resonance effect should also be acutely sensitive to the weak ac field if the bias field
is near to the critical value at which the switch of the greatest relaxation time from Arrhenius
to non-Arrhenius-like behaviour takes place.

We finally remark that a detailed review of matrix continued fraction methods for the
solution of differential recurrence relations is available in [35], while a detailed account of the
rotational Brownian motion of the sphere is available in [36].
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